1.) Subtract 1 from it. (n = n - 1) ,
2.) If n is divisible by 2, divide by 2.( if n % 2 == 0, then n = n / 2 ) ,
3.) If n is divisible by 3, divide by 3. (if n % 3 == 0, then n = n / 3 ).
The first and the only line of input contains an integer value, 'n'.
Print the minimum number of steps.
Constraints :
1 <= n <= 10 ^ 6
Time Limit: 1 sec
Sample Input 1 :
4
Sample Output 1 :
2
Explanation of Sample Output 1 :
For n = 4
Step 1 : n = 4 / 2 = 2
Step 2 : n = 2 / 2 = 1
Sample Input 2 :
7
Sample Output 2 :
3
Explanation of Sample Output 2 :
For n = 7
Step 1 : n = 7 - 1 = 6
Step 2 : n = 6 / 3 = 2
Step 3 : n = 2 / 2 = 1
int solve(int n,vector<int>&dp){
if(n<=1)return 0;
if(dp[n]!=-1) return dp[n];
int x=solve(n-1, dp);
int y=INT_MAX,z=INT_MAX;
if(n%2==0) y=solve(n/2, dp);
if(n%3==0) z=solve(n/3, dp);
int maxm=min(x,min(y,z))+1;
dp[n]=maxm;
return dp[n];
}
int countStepsToOne(int n)
{
//Write your code here
vector<int>dp(n+1,-1);
int ans= solve(n,dp);
return ans;
}
Comments
Post a Comment